Biophysical Characterization of the Dimer and Tetramer Interface Interactions of the Human Cytosolic Malic Enzyme

نویسندگان

  • Sujithkumar Murugan
  • Hui-Chih Hung
چکیده

The cytosolic NADP(+)-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8-10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional roles of the tetramer organization of malic enzyme.

Malic enzyme has a dimer of dimers quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In addition, the enzyme has distinct active sites within each subunit. The mitochondrial NAD(P)(+)-dependent malic enzyme (m-NAD(P)-ME) isoform behaves cooperatively and allosterically and exhibits a quaternary structure in dimer-tetramer equilibrium. The cyt...

متن کامل

Asp-89: a critical residue in maintaining the oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase.

Aspartate residues function as proton acceptors in catalysis and are involved in ionic interactions stabilizing subunit assembly. In an attempt to unravel the role of a conserved aspartate (D89) in sheep-liver tetrameric serine hydroxymethyltransferase (SHMT), it was converted into aspargine by site-directed mutagenesis. The purified D89N mutant enzyme had a lower specific activity compared wit...

متن کامل

Kinetic Ramifications of the Association-Dissociation Behavior of NAD Malic Enzyme : A Possible Regulatory Mechanism.

NAD malic enzyme can exist in dimer, tetramer, or octamer form. Freshly prepared enzyme from Solanum tuberosum var. Chieftan exists predominantly as the octamer and during storage is progressively converted into lower molecular weight forms. High ionic strength favors dimer formation, whereas high concentrations of malate or citrate favor tetramer formation. The tetramer is the most active form...

متن کامل

Purification and characterization of the NADP-malic enzyme from Bradyrhizobium japonicum A1017.

An NADP-malic enzyme [EC 1.1.1.40] was purified to homogeneity from Bradyrhizobium japonicum A1017, and the molecular and physiological characteristics were surveyed. The molecular mass of one subunit of the purified enzyme was evaluated to be 77,600 Da by SDS-PAGE, and the native enzyme was a tetramer in pH 7.0 and dimer in pH 8.0 conditions, showing complex oligomeric characteristics correspo...

متن کامل

Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases.

BACKGROUND Malic enzymes catalyze the oxidative decarboxylation of malate to pyruvate and CO2 with the concomitant reduction of NAD(P)+ to NAD(P)H. They are widely distributed in nature and have important biological functions. Human mitochondrial NAD(P)+-dependent malic enzyme (mNAD-ME) may have a crucial role in the metabolism of glutamine for energy production in rapidly dividing cells and tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012